{ "id": "1111.1868", "version": "v1", "published": "2011-11-08T10:56:36.000Z", "updated": "2011-11-08T10:56:36.000Z", "title": "The convolution algebra structure on $K^G(\\mathcal{B} \\times \\mathcal{B})$", "authors": [ "Sian Nie" ], "comment": "8 pages", "categories": [ "math.RT", "math.KT" ], "abstract": "We show that the convolution algebra $K^G(\\mathcal{B} \\times \\mathcal{B})$ is isomorphic to the Based ring of the lowest two-sided cell of the extended affine Weyl group associated to $G$, where $G$ is a connected reductive algebraic group over the field $\\mathbb{C}$ of complex numbers and $\\mathcal{B}$ is the flag variety of $G$.", "revisions": [ { "version": "v1", "updated": "2011-11-08T10:56:36.000Z" } ], "analyses": { "keywords": [ "convolution algebra structure", "extended affine weyl group", "lowest two-sided cell", "connected reductive algebraic group", "complex numbers" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.1868N" } } }