{ "id": "1111.1851", "version": "v2", "published": "2011-11-08T10:08:16.000Z", "updated": "2012-09-20T20:07:16.000Z", "title": "Random variables as pathwise integrals with respect to fractional Brownian motion", "authors": [ "Yuliya Mishura", "Georgiy Shevchenko", "Esko Valkeila" ], "journal": "Stochastic Processes Appl. 123 (2013), 2353-2369", "doi": "10.1016/j.spa.2013.02.015", "categories": [ "math.PR" ], "abstract": "We show that a pathwise stochastic integral with respect to fractional Brownian motion with an adapted integrand $g$ can have any prescribed distribution, moreover, we give both necessary and sufficient conditions when random variables can be represented in this form. We also prove that any random variable is a value of such integral in some improper sense. We discuss some applications of these results, in particular, to fractional Black--Scholes model of financial market.", "revisions": [ { "version": "v2", "updated": "2012-09-20T20:07:16.000Z" } ], "analyses": { "subjects": [ "60G22", "60H05", "60G15", "91G10" ], "keywords": [ "fractional brownian motion", "random variable", "pathwise integrals", "fractional black-scholes model", "pathwise stochastic integral" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.1851M" } } }