{ "id": "1111.1558", "version": "v1", "published": "2011-11-07T12:27:57.000Z", "updated": "2011-11-07T12:27:57.000Z", "title": "On proper colorings of hypergraphs", "authors": [ "Nick Gravin", "Dmitrii Karpov" ], "comment": "10 pages, 3 figure", "journal": "Journal of Mathematical Sciences, Volume 184, Issue 5 (2012), pp. 595-600", "doi": "10.1007/s10958-012-0884-2", "categories": [ "math.CO" ], "abstract": "Let $\\mathcal{H}$ be a hypergraph of maximal vertex degree $\\Delta$, such that each its hyperedge contains at least $\\delta$ vertices. Let $k=\\lceil\\frac{2\\Delta}{\\delta}\\rceil$. We prove that (i) The hypergraph $\\mathcal{H}$ admits proper vertex coloring in $k+1$ colors. (ii) The hypergraph $\\mathcal{H}$ admits proper vertex coloring in $k$ colors, if $\\delta\\ge 3$ and $k\\ge 3$. As a consequence of these results we derive upper bounds on the number of colors in dynamic colorings.", "revisions": [ { "version": "v1", "updated": "2011-11-07T12:27:57.000Z" } ], "analyses": { "keywords": [ "proper colorings", "hypergraph", "admits proper vertex coloring", "maximal vertex degree", "dynamic colorings" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.1558G" } } }