{ "id": "1111.1150", "version": "v1", "published": "2011-11-04T15:22:10.000Z", "updated": "2011-11-04T15:22:10.000Z", "title": "Lattice Platonic Solids and their Ehrhart polynomial", "authors": [ "Eugen J. Ionascu" ], "comment": "12 pages, 4 figures", "categories": [ "math.CO", "math.NT" ], "abstract": "First, we calculate the Ehrhart polynomial associated to an arbitrary cube with integer coordinates for its vertices. Then, we use this result to derive relationships between the Ehrhart polynomials for regular lattice tetrahedrons and those for regular lattice octahedrons. These relations allow one to reduce the calculation of these polynomials to only one coefficient.", "revisions": [ { "version": "v1", "updated": "2011-11-04T15:22:10.000Z" } ], "analyses": { "subjects": [ "52C07", "05A15", "68R05" ], "keywords": [ "ehrhart polynomial", "lattice platonic solids", "regular lattice tetrahedrons", "regular lattice octahedrons", "integer coordinates" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.1150I" } } }