{ "id": "1111.0729", "version": "v3", "published": "2011-11-03T05:10:48.000Z", "updated": "2014-05-24T00:14:13.000Z", "title": "Logic for metric structures and the number of universal sofic and hyperlinear groups", "authors": [ "Martino Lupini" ], "comment": "14 pages; accepted for publication by the Proceedings of the American Mathematical Society", "categories": [ "math.LO" ], "abstract": "Using the model theory of metric structures, I give an alternative proof of the following result by Thomas: If the Continuum Hypothesis fails then there are power of the continuum many universal sofic groups up to isomorphism. This method is also applicable to universal hyperlinear groups, giving a positive answer to a question posed by Thomas.", "revisions": [ { "version": "v3", "updated": "2014-05-24T00:14:13.000Z" } ], "analyses": { "subjects": [ "03C20", "03E35", "20F69", "16E50" ], "keywords": [ "metric structures", "universal sofic groups", "universal hyperlinear groups", "continuum hypothesis fails", "model theory" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1111.0729L" } } }