{ "id": "1111.0390", "version": "v1", "published": "2011-11-02T05:36:02.000Z", "updated": "2011-11-02T05:36:02.000Z", "title": "Classification and nondegeneracy of $SU(n+1)$ Toda system with singular sources", "authors": [ "Chang-Shou Lin", "Dong Ye", "Juncheng Wei" ], "comment": "28 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "We consider the following Toda system \\Delta u_i + \\D \\sum_{j = 1}^n a_{ij}e^{u_j} = 4\\pi\\gamma_{i}\\delta_{0} \\text{in}\\mathbb R^2, \\int_{\\mathbb R^2}e^{u_i} dx < \\infty, \\forall 1\\leq i \\leq n, where $\\gamma_{i} > -1$, $\\delta_0$ is Dirac measure at 0, and the coefficients $a_{ij}$ form the standard tri-diagonal Cartan matrix. In this paper, (i) we completely classify the solutions and obtain the quantization result: $$\\sum_{j=1}^n a_{ij}\\int_{\\R^2}e^{u_j} dx = 4\\pi (2+\\gamma_i+\\gamma_{n+1-i}), \\;\\;\\forall\\; 1\\leq i \\leq n.$$ This generalizes the classification result by Jost and Wang for $\\gamma_i=0$, $\\forall \\;1\\leq i\\leq n$. (ii) We prove that if $\\gamma_i+\\gamma_{i+1}+...+\\gamma_j \\notin \\mathbb Z$ for all $1\\leq i\\leq j\\leq n$, then any solution $u_i$ is \\textit{radially symmetric} w.r.t. 0. (iii) We prove that the linearized equation at any solution is \\textit{non-degenerate}. These are fundamental results in order to understand the bubbling behavior of the Toda system.", "revisions": [ { "version": "v1", "updated": "2011-11-02T05:36:02.000Z" } ], "analyses": { "subjects": [ "35B20" ], "keywords": [ "toda system", "singular sources", "nondegeneracy", "standard tri-diagonal cartan matrix", "dirac measure" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00222-012-0378-3", "journal": "Inventiones Mathematicae", "year": 2012, "month": "Oct", "volume": 190, "number": 1, "pages": 169 }, "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012InMat.190..169L" } } }