{ "id": "1110.6881", "version": "v1", "published": "2011-10-31T18:16:10.000Z", "updated": "2011-10-31T18:16:10.000Z", "title": "An Explicit Presentation of the Grothendieck Ring of Finitely Generated F_{q}[SL(2,F_{q})]-Modules", "authors": [ "Davide A. Reduzzi" ], "comment": "11 pages. Comments are welcome", "categories": [ "math.RT" ], "abstract": "Let p be a prime and q=p^g. We show that the Grothendieck ring of finitely generated F_{q}[SL(2,F_{q})]-modules is naturally isomorphic to the quotient of the polynomial algebra Z[x] by the ideal generated by f^[g](x)-x, where f(x)=sum_{j=0}^{floor(p/2)}(-1)^{j}(p/(p-j))((p-j); j)x^{p-2j}, and the superscript [g] denotes g-fold composition of polynomials. We conjecture that a similar result holds for simply connected semisimple algebraic groups defined and split over a finite field.", "revisions": [ { "version": "v1", "updated": "2011-10-31T18:16:10.000Z" } ], "analyses": { "keywords": [ "grothendieck ring", "explicit presentation", "denotes g-fold composition", "similar result holds" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.6881R" } } }