{ "id": "1110.6805", "version": "v1", "published": "2011-10-31T14:31:14.000Z", "updated": "2011-10-31T14:31:14.000Z", "title": "On the Mattila-Sjolin theorem for distance sets", "authors": [ "Alex Iosevich", "Mihalis Mourgoglou", "Krystal Taylor" ], "categories": [ "math.CA", "math.MG" ], "abstract": "We extend a result, due to Mattila and Sjolin, which says that if the Hausdorff dimension of a compact set $E \\subset {\\Bbb R}^d$, $d \\ge 2$, is greater than $\\frac{d+1}{2}$, then the distance set $\\Delta(E)=\\{|x-y|: x,y \\in E \\}$ contains an interval. We prove this result for distance sets $\\Delta_B(E)=\\{{||x-y||}_B: x,y \\in E \\}$, where ${|| \\cdot ||}_B$ is the metric induced by the norm defined by a symmetric bounded convex body $B$ with a smooth boundary and everywhere non-vanishing Gaussian curvature. We also obtain some detailed estimates pertaining to the Radon-Nikodym derivative of the distance measure.", "revisions": [ { "version": "v1", "updated": "2011-10-31T14:31:14.000Z" } ], "analyses": { "subjects": [ "42B35", "52C10", "28A75" ], "keywords": [ "distance set", "mattila-sjolin theorem", "symmetric bounded convex body", "compact set", "hausdorff dimension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.6805I" } } }