{ "id": "1110.6608", "version": "v1", "published": "2011-10-30T13:57:15.000Z", "updated": "2011-10-30T13:57:15.000Z", "title": "On the cohomology of the free loop space of a complex projective space", "authors": [ "Nora Seeliger" ], "comment": "revised version", "categories": [ "math.AT" ], "abstract": "Let $\\Lambda (\\mathbb{C}P^n)$ denote the free loop space of the complex projective space $\\mathbb{C}P^n$, i. e. $\\mathbb{C}P^n$ is the projective space of the vector space $\\mathbb{C}^{n+1}$ of dimension $n+1$ over the complex numbers $\\mathbb{C}$ and $\\Lambda(\\mathbb{C}P^n)$ is the function space $\\mathrm{map}(S^1,\\mathbb{C}P^n)$ of unbased maps from a circle $S^1$ into $\\mathbb{C}P^n$ topologized with the compact open topology. In this note we show that despite the fact that the natural fibration $\\Omega(\\mathbb{C}P^n)\\hookrightarrow \\Lambda(\\mathbb{C}P^n)\\stackrel{eval}{\\longrightarrow}\\mathbb{C}P^n$ has a cross section its Serre spectral sequence does not collapse: Here $eval$ is the evaluation map at a base point * $\\in \\mathbb{C}P^n$.", "revisions": [ { "version": "v1", "updated": "2011-10-30T13:57:15.000Z" } ], "analyses": { "keywords": [ "free loop space", "complex projective space", "cohomology", "compact open topology", "serre spectral sequence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.6608S" } } }