{ "id": "1110.6338", "version": "v2", "published": "2011-10-28T14:02:37.000Z", "updated": "2013-01-22T21:22:20.000Z", "title": "Rationality of the quotient of $\\mathbb{P}^2$ by finite group of automorphisms over arbitrary field of characteristic zero", "authors": [ "Andrey S. Trepalin" ], "comment": "15 pages, 1 figure", "categories": [ "math.AG" ], "abstract": "Let $\\Bbbk$ be a field of characteristic zero and $G$ be a finite group of automorphisms of projective plane over $\\Bbbk$. Castelnuovo's criterion implies that the quotient of projective plane by $G$ is rational if the field $\\Bbbk$ is algebraically closed. In this paper we prove that $\\mathbb{P}^2_{\\Bbbk} / G$ is rational for an arbitrary field $\\Bbbk$ of characteristic zero.", "revisions": [ { "version": "v2", "updated": "2013-01-22T21:22:20.000Z" } ], "analyses": { "keywords": [ "characteristic zero", "finite group", "arbitrary field", "automorphisms", "rationality" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.6338T" } } }