{ "id": "1110.6187", "version": "v1", "published": "2011-10-27T20:06:59.000Z", "updated": "2011-10-27T20:06:59.000Z", "title": "Convexification in the limit and strong law of large numbers for closed-valued random sets in Banach spaces", "authors": [ "Francesco S. de Blasi", "Luca Tomassini" ], "categories": [ "math.PR" ], "abstract": "We prove a strong law of large numbers for random sets with bounded and closed values contained in an arbitrary (not necessarily separable) Banach space. We make use of a notion of convergence of sets introduced by Fisher, which is stronger than Wijsman's convergence but in general not comparable with Mosco's convergence.", "revisions": [ { "version": "v1", "updated": "2011-10-27T20:06:59.000Z" } ], "analyses": { "keywords": [ "closed-valued random sets", "banach space", "strong law", "large numbers", "convexification" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.6187D" } } }