{ "id": "1110.6124", "version": "v2", "published": "2011-10-27T15:49:41.000Z", "updated": "2011-10-28T13:59:25.000Z", "title": "A planar bi-Lipschitz extension Theorem", "authors": [ "Sara Daneri", "Aldo Pratelli" ], "comment": "55 pages, 21 figures", "categories": [ "math.FA", "math.AP" ], "abstract": "We prove that, given a planar bi-Lipschitz homeomorphism $u$ defined on the boundary of the unit square, it is possible to extend it to a function $v$ of the whole square, in such a way that $v$ is still bi-Lipschitz. In particular, denoting by $L$ and $\\widetilde L$ the bi-Lipschitz constants of $u$ and $v$, with our construction one has $\\widetilde L \\leq C L^4$ (being $C$ an explicit geometrical constant). The same result was proved in 1980 by Tukia (see \\cite{Tukia}), using a completely different argument, but without any estimate on the constant $\\widetilde L$. In particular, the function $v$ can be taken either smooth or (countably) piecewise affine.", "revisions": [ { "version": "v2", "updated": "2011-10-28T13:59:25.000Z" } ], "analyses": { "keywords": [ "planar bi-lipschitz extension theorem", "planar bi-lipschitz homeomorphism", "unit square", "bi-lipschitz constants", "explicit geometrical constant" ], "note": { "typesetting": "TeX", "pages": 55, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.6124D" } } }