{ "id": "1110.5772", "version": "v1", "published": "2011-10-26T11:56:27.000Z", "updated": "2011-10-26T11:56:27.000Z", "title": "Rainbow connection number of dense graphs", "authors": [ "Xueliang Li", "Mengmeng Liu", "Ingo Schiermeyer" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "An edge-colored graph $G$ is rainbow connected, if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph $G$, denoted $rc(G)$, is the smallest number of colors that are needed in order to make $G$ rainbow connected. In this paper we show that $rc(G)\\leq 3$, if $|E(G)|\\geq {{n-2}\\choose 2}+2$, and $rc(G)\\leq 4$, if $|E(G)|\\geq {{n-3}\\choose 2}+3$. These bounds are sharp.", "revisions": [ { "version": "v1", "updated": "2011-10-26T11:56:27.000Z" } ], "analyses": { "subjects": [ "05C15", "05C40" ], "keywords": [ "rainbow connection number", "dense graphs", "distinct colors", "smallest number" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.5772L" } } }