{ "id": "1110.5620", "version": "v1", "published": "2011-10-25T19:30:54.000Z", "updated": "2011-10-25T19:30:54.000Z", "title": "Balanced Metrics and Chow Stability of Projective Bundles over Kähler Manifolds II", "authors": [ "Reza Seyyedali" ], "categories": [ "math.DG", "math.AG", "math.CV" ], "abstract": "In the previous article (\\cite{S}), we proved that slope stability of a holomorphic vector bundle $E$ over a polarized manifold $(X,L)$ implies Chow stability of $(\\mathbb{P}E^*,\\mathcal{O}_{\\mathbb{P}E^*}(1)\\otimes \\pi^* L^k)$ for $k \\gg 0$ if the base manifold has no nontrivial holomorphic vector field and admits a constant scalar curvature metric in the class of $2\\pi c_{1}(L)$. In this article using asymptotic expansions of Bergman kernel on $\\textrm{Sym}^d E$, we generalize the main theorem of \\cite{S} to polarizations $(\\mathbb{P}E^*,\\mathcal{O}_{\\mathbb{P}E^*}(d)\\otimes \\pi^* L^k)$ for $k \\gg 0$, where $d$ is a positive integer.", "revisions": [ { "version": "v1", "updated": "2011-10-25T19:30:54.000Z" } ], "analyses": { "keywords": [ "kähler manifolds", "projective bundles", "balanced metrics", "nontrivial holomorphic vector field", "constant scalar curvature metric" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.5620S" } } }