{ "id": "1110.5357", "version": "v4", "published": "2011-10-24T21:21:02.000Z", "updated": "2011-12-07T09:10:07.000Z", "title": "On conformal surfaces of annulus type", "authors": [ "Yong Luo" ], "comment": "Some typos have been polished and I find that the best constant for L^infinity norm in Wente inequality has been established by Topping in a paper dated to 1997", "categories": [ "math.DG", "math.AP" ], "abstract": "Let $a>b>0$ and $f$ be a conformal map from $B_a\\setminus B_b\\subseteq R^2$ into $\\R^n$, with $|\\nabla f|^2=2e^{2u}$. Then $(e_1, e_2)$ with $e_1=e^{-u}\\frac{\\partial f}{\\partial r},$ and $e_2=r^{-1}e^{-u}\\frac{\\partial f}{\\partial\\theta}$ is a moving frame on $f(B_a\\setminus B_b)$. It satisfies the following equation $$d\\star=0,$$ where $\\star$ is the Hodge star operator on $R^2$ with respect to the standard metric. We will study the Dirichret energy of this frame and give some applications.", "revisions": [ { "version": "v4", "updated": "2011-12-07T09:10:07.000Z" } ], "analyses": { "keywords": [ "annulus type", "conformal surfaces", "hodge star operator", "dirichret energy", "standard metric" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.jde.2012.08.036", "journal": "Journal of Differential Equations", "year": 2012, "volume": 253, "number": 12, "pages": 3266 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012JDE...253.3266L" } } }