{ "id": "1110.4921", "version": "v3", "published": "2011-10-21T22:42:25.000Z", "updated": "2011-11-30T11:00:10.000Z", "title": "On the density of periodic configurations in strongly irreducible subshifts", "authors": [ "Tullio Ceccherini-Silberstein", "Michel Coornaert" ], "journal": "Nonlinearity 25 (2012), 2119-2131", "categories": [ "math.DS", "math.GR" ], "abstract": "Let $G$ be a residually finite group and let $A$ be a finite set. We prove that if $X \\subset A^G$ is a strongly irreducible subshift of finite type containing a periodic configuration then periodic configurations are dense in $X$. The density of periodic configurations implies in particular that every injective endomorphism of $X$ is surjective and that the group of automorphisms of $X$ is residually finite. We also introduce a class of subshifts $X \\subset A^\\Z$, including all strongly irreducible subshifts and all irreducible sofic subshifts, in which periodic configurations are dense.", "revisions": [ { "version": "v3", "updated": "2011-11-30T11:00:10.000Z" } ], "analyses": { "subjects": [ "37B10", "37B15", "37B50", "68Q80" ], "keywords": [ "strongly irreducible subshift", "periodic configurations implies", "finite type", "finite set", "irreducible sofic subshifts" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/0951-7715/25/7/2119", "journal": "Nonlinearity", "year": 2012, "month": "Jul", "volume": 25, "number": 7, "pages": 2119 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012Nonli..25.2119C" } } }