{ "id": "1110.4253", "version": "v2", "published": "2011-10-19T12:10:33.000Z", "updated": "2011-10-27T14:24:31.000Z", "title": "General forms of the Menshov-Rademacher, Orlicz, and Tandori theorems on orthogonal series", "authors": [ "Vladimir A. Mikhailets", "Aleksandr A. Murach" ], "comment": "in English, translation of the 1-st (Russian) version, 12 pages", "journal": "Methods Funct. Anal. Topology 17 (2011), no. 4, 330-340", "categories": [ "math.FA" ], "abstract": "We prove that the classical Menshov-Rademacher, Orlicz, and Tandori theorems remain true for orthogonal series given in the direct integrals of measurable collections of Hilbert spaces. In particular, these theorems are true for the spaces L_{2}(X,d\\mu;H) of vector-valued functions, where (X,\\mu) is an arbitrary measure space, and H is a real or complex Hilbert space of an arbitrary dimension.", "revisions": [ { "version": "v2", "updated": "2011-10-27T14:24:31.000Z" } ], "analyses": { "subjects": [ "40A30", "46E40" ], "keywords": [ "orthogonal series", "general forms", "menshov-rademacher", "tandori theorems remain true", "complex hilbert space" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.4253M" } } }