{ "id": "1110.3497", "version": "v2", "published": "2011-10-16T16:22:13.000Z", "updated": "2013-05-11T21:03:29.000Z", "title": "Determinants of Box Products of Paths", "authors": [ "Daniel Pragel" ], "doi": "10.1016/j.disc.2012.01.038", "categories": [ "math.CO" ], "abstract": "Suppose that G is the graph obtained by taking the box product of a path of length n and a path of length m. Let M be the adjacency matrix of G. If n=m, H.M. Rara showed in 1996 that det(M)=0. We extend this result to allow n and m to be any positive integers, and show that, if gcd(n+1,m+1)>1, then det(M)=0; otherwise, if gcd(n+1,m+1)=1, then det(M)=(-1)^(nm/2).", "revisions": [ { "version": "v2", "updated": "2013-05-11T21:03:29.000Z" } ], "analyses": { "keywords": [ "box product", "determinants", "adjacency matrix", "positive integers" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.3497P" } } }