{ "id": "1110.3367", "version": "v2", "published": "2011-10-15T00:22:26.000Z", "updated": "2012-06-05T21:06:25.000Z", "title": "On cover times for 2D lattices", "authors": [ "Jian Ding" ], "comment": "21 pages, major revision upon previous version", "categories": [ "math.PR" ], "abstract": "We study the cover time $\\tau_{\\mathrm{cov}}$ by (continuous-time) random walk on the 2D box of side length $n$ with wired boundary or on the 2D torus, and show that in both cases with probability approaching 1 as $n$ increases, $\\sqrt{\\tau_{\\mathrm{cov}}}=\\sqrt{2n^2}[\\sqrt{2/\\pi} \\log n + O(\\log\\log n)]$. This improves a result of Dembo, Peres, Rosen, and Zeitouni (2004) and makes progress towards a conjecture of Bramson and Zeitouni (2009).", "revisions": [ { "version": "v2", "updated": "2012-06-05T21:06:25.000Z" } ], "analyses": { "subjects": [ "60J10", "60G60", "60G15" ], "keywords": [ "cover time", "2d lattices", "2d box", "side length", "2d torus" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.3367D" } } }