{ "id": "1110.2539", "version": "v1", "published": "2011-10-12T00:33:45.000Z", "updated": "2011-10-12T00:33:45.000Z", "title": "Super Polyharmonic Property of Solutions for PDE Systems and Its Applications", "authors": [ "Wenxiong Chen", "Congming Li" ], "categories": [ "math.AP" ], "abstract": "In this paper, we prove that all the positive solutions for the PDE system (-\\Delta)^{k}u_{i} = f_{i}(u_{1},..., u_{m}), x \\in R^{n}, i = 1, 2,..., m are super polyharmonic, i.e. (-\\Delta)^{j}u_{i} > 0, j = 1, 2,..., k - 1; i = 1, 2,...,m. To prove this important super polyharmonic property, we introduced a few new ideas and derived some new estimates. As an interesting application, we establish the equivalence between the integral system u_{i}(x) = \\int_{R^{n}} \\frac{1}{|x - y|^{n-\\alpha}}f_{i}(u_{1}(y),..., u_{m}(y))dy, x \\in R^{n} and PDE system when \\alpha? = 2k < n", "revisions": [ { "version": "v1", "updated": "2011-10-12T00:33:45.000Z" } ], "analyses": { "keywords": [ "pde system", "important super polyharmonic property", "integral system", "positive solutions", "interesting application" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.2539C" } } }