{ "id": "1110.2460", "version": "v1", "published": "2011-10-11T18:21:25.000Z", "updated": "2011-10-11T18:21:25.000Z", "title": "The Double Scaling Limit in Arbitrary Dimensions: A Toy Model", "authors": [ "Razvan Gurau" ], "doi": "10.1103/PhysRevD.84.124051", "categories": [ "hep-th", "gr-qc" ], "abstract": "Colored tensor models generalize matrix models in arbitrary dimensions yielding a statistical theory of random higher dimensional topological spaces. They admit a 1/N expansion dominated by graphs of spherical topology. The simplest tensor model one can consider maps onto a rectangular matrix model with skewed scalings. We analyze this simplest toy model and show that it exhibits a family of multi critical points and a novel double scaling limit. We show in D=3 dimensions that only graphs representing spheres contribute in the double scaling limit, and argue that similar results hold for any dimension.", "revisions": [ { "version": "v1", "updated": "2011-10-11T18:21:25.000Z" } ], "analyses": { "subjects": [ "04.60.Gw", "05.40.-a", "02.10.Yn" ], "keywords": [ "double scaling limit", "arbitrary dimensions", "toy model", "higher dimensional topological spaces", "tensor models generalize matrix models" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review D", "year": 2011, "month": "Dec", "volume": 84, "number": 12, "pages": 124051 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 939465, "adsabs": "2011PhRvD..84l4051G" } } }