{ "id": "1110.2365", "version": "v2", "published": "2011-10-11T13:19:14.000Z", "updated": "2011-10-14T12:36:06.000Z", "title": "Absolute continuity, Lyapunov exponents and rigidity I : geodesic flows", "authors": [ "Artur Avila", "Marcelo Viana", "Amie Wilkinson" ], "comment": "29 pages. Small error in statement of Theorem A corrected from previous version (\"k points\" replaced by \"k orbits\")", "categories": [ "math.DS" ], "abstract": "We consider volume-preserving perturbations of the time-one map of the geodesic flow of a compact surface with negative curvature. We show that if the Liouville measure has Lebesgue disintegration along the center foliation then the perturbation is itself the time-one map of a smooth volume-preserving flow, and that otherwise the disintegration is necessarily atomic.", "revisions": [ { "version": "v2", "updated": "2011-10-14T12:36:06.000Z" } ], "analyses": { "subjects": [ "37C40", "37C85" ], "keywords": [ "geodesic flow", "lyapunov exponents", "absolute continuity", "time-one map", "compact surface" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.2365A" } } }