{ "id": "1110.2296", "version": "v1", "published": "2011-10-11T08:16:57.000Z", "updated": "2011-10-11T08:16:57.000Z", "title": "Quasi-periodic perturbations within the reversible context 2 in KAM theory", "authors": [ "Mikhail B. Sevryuk" ], "comment": "15 pages", "journal": "Indagationes Mathematicae, 2012, v. 23, N 3, pp. 137-150", "categories": [ "math.DS" ], "abstract": "The paper consists of two sections. In Section 1, we give a short review of KAM theory with an emphasis on Whitney smooth families of invariant tori in typical Hamiltonian and reversible systems. In Section 2, we prove a KAM-type result for non-autonomous reversible systems (depending quasi-periodically on time) within the almost unexplored reversible context 2. This context refers to the situation where dim Fix G < (1/2) codim T, here Fix G is the fixed point manifold of the reversing involution G and T is the invariant torus one deals with.", "revisions": [ { "version": "v1", "updated": "2011-10-11T08:16:57.000Z" } ], "analyses": { "subjects": [ "70K43", "70H33", "37J40", "70H08" ], "keywords": [ "kam theory", "reversible context", "quasi-periodic perturbations", "invariant torus", "whitney smooth families" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.2296S" } } }