{ "id": "1110.1961", "version": "v2", "published": "2011-10-10T08:48:37.000Z", "updated": "2012-06-26T18:50:05.000Z", "title": "k-Sums in abelian groups", "authors": [ "Benjamin Girard", "Simon Griffiths", "Yahya Ould Hamidoune" ], "comment": "15 pages", "journal": "Combinatorics, Probability and Computing 21, 4 (2012) 582-596", "doi": "10.1017/S0963548312000168", "categories": [ "math.CO", "math.GR", "math.NT" ], "abstract": "Given a finite subset A of an abelian group G, we study the set k \\wedge A of all sums of k distinct elements of A. In this paper, we prove that |k \\wedge A| >= |A| for all k in {2,...,|A|-2}, unless k is in {2,|A|-2} and A is a coset of an elementary 2-subgroup of G. Furthermore, we characterize those finite subsets A of G for which |k \\wedge A| = |A| for some k in {2,...,|A|-2}. This result answers a question of Diderrich. Our proof relies on an elementary property of proper edge-colourings of the complete graph.", "revisions": [ { "version": "v2", "updated": "2012-06-26T18:50:05.000Z" } ], "analyses": { "keywords": [ "abelian group", "finite subset", "distinct elements", "complete graph", "result answers" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.1961G" } } }