{ "id": "1110.0662", "version": "v1", "published": "2011-10-04T12:39:40.000Z", "updated": "2011-10-04T12:39:40.000Z", "title": "On the blowup and lifespan of smooth solutions to a class of 2-D nonlinear wave equations with small initial data", "authors": [ "Jun Li", "Ingo Witt", "Huicheng Yin" ], "comment": "30 pages, 2 figures", "categories": [ "math.AP" ], "abstract": "We are concerned with a class of two-dimensional nonlinear wave equations $\\p_t^2u-\\div(c^2(u)\\na u)=0$ or $\\p_t^2u-c(u)\\div(c(u)\\na u)=0$ with small initial data $(u(0,x),\\p_tu(0,x))=(\\ve u_0(x), \\ve u_1(x))$, where $c(u)$ is a smooth function, $c(0)\\not =0$, $x\\in\\Bbb R^2$, $u_0(x), u_1(x)\\in C_0^{\\infty}(\\Bbb R^2)$ depend only on $r=\\sqrt{x_1^2+x_2^2}$, and $\\ve>0$ is sufficiently small. Such equations arise in a pressure-gradient model of fluid dynamics, also in a liquid crystal model or other variational wave equations. When $c'(0)\\not= 0$ or $c'(0)=0$, $c\"(0)\\not= 0$, we establish blowup and determine the lifespan of smooth solutions.", "revisions": [ { "version": "v1", "updated": "2011-10-04T12:39:40.000Z" } ], "analyses": { "subjects": [ "35L65", "35J70" ], "keywords": [ "small initial data", "smooth solutions", "two-dimensional nonlinear wave equations", "variational wave equations", "liquid crystal model" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.0662L" } } }