{ "id": "1110.0297", "version": "v1", "published": "2011-10-03T08:31:45.000Z", "updated": "2011-10-03T08:31:45.000Z", "title": "Pseudodifferential Operators on Variable Lebesgue Spaces", "authors": [ "Alexei Yu. Karlovich", "Ilya M. Spitkovsky" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "Let $\\mathcal{M}(\\mathbb{R}^n)$ be the class of bounded away from one and infinity functions $p:\\mathbb{R}^n\\to[1,\\infty]$ such that the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space $L^{p(\\cdot)}(\\mathbb{R}^n)$. We show that if $a$ belongs to the H\\\"ormander class $S_{\\rho,\\delta}^{n(\\rho-1)}$ with $0<\\rho\\le 1$, $0\\le\\delta<1$, then the pseudodifferential operator $\\Op(a)$ is bounded on the variable Lebesgue space $L^{p(\\cdot)}(\\R^n)$ provided that $p\\in\\cM(\\R^n)$. Let $\\mathcal{M}^*(\\mathbb{R}^n)$ be the class of variable exponents $p\\in\\mathcal{M}(\\mathbb{R}^n)$ represented as $1/p(x)=\\theta/p_0+(1-\\theta)/p_1(x)$ where $p_0\\in(1,\\infty)$, $\\theta\\in(0,1)$, and $p_1\\in\\mathcal{M}(\\mathbb{R}^n)$. We prove that if $a\\in S_{1,0}^0$ slowly oscillates at infinity in the first variable, then the condition \\[ \\lim_{R\\to\\infty}\\inf_{|x|+|\\xi|\\ge R}|a(x,\\xi)|>0 \\] is sufficient for the Fredholmness of $\\Op(a)$ on $L^{p(\\cdot)}(\\R^n)$ whenever $p\\in\\cM^*(\\R^n)$. Both theorems generalize pioneering results by Rabinovich and Samko \\cite{RS08} obtained for globally log-H\\\"older continuous exponents $p$, constituting a proper subset of $\\mathcal{M}^*(\\mathbb{R}^n)$.", "revisions": [ { "version": "v1", "updated": "2011-10-03T08:31:45.000Z" } ], "analyses": { "subjects": [ "47G30", "42B25", "46E30" ], "keywords": [ "variable lebesgue space", "pseudodifferential operator", "hardy-littlewood maximal operator", "infinity functions", "theorems generalize pioneering results" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.0297K" } } }