{ "id": "1109.6783", "version": "v1", "published": "2011-09-30T10:23:40.000Z", "updated": "2011-09-30T10:23:40.000Z", "title": "A sharp inequality for transport maps in W^{1,p}(R) via approximation", "authors": [ "Jean Louet", "Filippo Santambrogio" ], "categories": [ "math.AP", "math.OC" ], "abstract": "For $f$ convex and increasing, we prove the inequality $ \\int f(|U'|) \\geq \\int f(nT')$, every time that $U$ is a Sobolev function of one variable and $T$ is the non-decreasing map defined on the same interval with the same image measure as $U$, and the function $n(x)$ takes into account the number of pre-images of $U$ at each point. This may be applied to some variational problems in a mass-transport framework or under volume constraints.", "revisions": [ { "version": "v1", "updated": "2011-09-30T10:23:40.000Z" } ], "analyses": { "keywords": [ "transport maps", "sharp inequality", "approximation", "mass-transport framework", "variational problems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.6783L" } } }