{ "id": "1109.6669", "version": "v2", "published": "2011-09-29T20:42:50.000Z", "updated": "2012-03-29T21:09:40.000Z", "title": "A Giambelli formula for even orthogonal Grassmannians", "authors": [ "Anders S. Buch", "Andrew Kresch", "Harry Tamvakis" ], "comment": "28 pages; added appendix gives geometric description of Schubert varieties, correcting errors in arXiv:0809.4966", "categories": [ "math.AG" ], "abstract": "Let X be an orthogonal Grassmannian parametrizing isotropic subspaces in an even dimensional vector space equipped with a nondegenerate symmetric form. We prove a Giambelli formula which expresses an arbitrary Schubert class in the singular and quantum cohomology ring of X as a polynomial in certain special Schubert classes. Our analysis reveals a surprising relation between the Schubert calculus on even and odd orthogonal Grassmannians. We also study eta polynomials, a family of polynomials defined using raising operators whose algebra agrees with the Schubert calculus on X.", "revisions": [ { "version": "v2", "updated": "2012-03-29T21:09:40.000Z" } ], "analyses": { "subjects": [ "14N15", "05E15", "14M15" ], "keywords": [ "giambelli formula", "orthogonal grassmannian parametrizing isotropic subspaces", "schubert calculus", "study eta polynomials", "odd orthogonal grassmannians" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.6669B" } } }