{ "id": "1109.6521", "version": "v1", "published": "2011-09-29T13:20:10.000Z", "updated": "2011-09-29T13:20:10.000Z", "title": "Cyclic Matching Sequencibility of Graphs", "authors": [ "Richard A. Brualdi", "Kathleen P. Kiernan", "Seth A. Meyer", "Michael w. Schroeder" ], "categories": [ "math.CO" ], "abstract": "We define the cyclic matching sequencibility of a graph to be the largest integer $d$ such that there exists a cyclic ordering of its edges so that every $d$ consecutive edges in the cyclic ordering form a matching. We show that the cyclic matching sequencibility of $K_{2m}$ and $K_{2m+1}$ equal $m-1$.", "revisions": [ { "version": "v1", "updated": "2011-09-29T13:20:10.000Z" } ], "analyses": { "subjects": [ "05C70", "05C38", "05C50" ], "keywords": [ "cyclic matching sequencibility", "largest integer", "cyclic ordering form", "consecutive edges" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.6521B" } } }