{ "id": "1109.6253", "version": "v2", "published": "2011-09-28T16:00:55.000Z", "updated": "2013-02-01T17:14:47.000Z", "title": "Manin's conjecture for a singular quartic del Pezzo surface", "authors": [ "Daniel Loughran" ], "doi": "10.1112/jlms/jds017", "categories": [ "math.NT" ], "abstract": "We prove Manin's conjecture for a split singular quartic del Pezzo surface with singularity type $2\\Aone$ and eight lines. This is achieved by equipping the surface with a conic bundle structure. To handle the sum over the family of conics, we prove a result of independent interest on a certain restricted divisor problem for four binary linear forms.", "revisions": [ { "version": "v2", "updated": "2013-02-01T17:14:47.000Z" } ], "analyses": { "subjects": [ "11D45", "14G05", "11N37" ], "keywords": [ "singular quartic del pezzo surface", "manins conjecture", "split singular quartic del pezzo", "conic bundle structure", "binary linear forms" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.6253L" } } }