{ "id": "1109.5040", "version": "v2", "published": "2011-09-23T11:47:32.000Z", "updated": "2011-10-25T07:59:16.000Z", "title": "The Linear Ordering Polytope via Representations", "authors": [ "Lukas Katthän" ], "categories": [ "math.CO" ], "abstract": "Let $P_n$ denote the $n$-th linear ordering polytope. We define projections from $P_n$ to the $n$-th permutahedron and to the $(n-1)$-st linear ordering polytope. Both projections are equivariant with respect to the natural $\\Sn$-action and they project to orthogonal subspaces. In particular the second projection defines an $S_n$-action in $P_{n-1}$.", "revisions": [ { "version": "v2", "updated": "2011-10-25T07:59:16.000Z" } ], "analyses": { "subjects": [ "52B12" ], "keywords": [ "representations", "second projection defines", "th linear ordering polytope", "st linear ordering polytope", "define projections" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.5040K" } } }