{ "id": "1109.3933", "version": "v1", "published": "2011-09-19T03:05:09.000Z", "updated": "2011-09-19T03:05:09.000Z", "title": "Roman Bondage Numbers of Some Graphs", "authors": [ "Fu-Tao Hu", "Ju-Ming Xu" ], "comment": "10 pages", "categories": [ "math.CO" ], "abstract": "A Roman dominating function on a graph $G=(V,E)$ is a function $f: V\\to \\{0,1,2\\}$ satisfying the condition that every vertex $u$ with $f(u)=0$ is adjacent to at least one vertex $v$ with $f(v)=2$. The weight of a Roman dominating function is the value $f(G)=\\sum_{u\\in V} f(u)$. The Roman domination number of $G$ is the minimum weight of a Roman dominating function on $G$. The Roman bondage number of a nonempty graph $G$ is the minimum number of edges whose removal results in a graph with the Roman domination number larger than that of $G$. This paper determines the exact value of the Roman bondage numbers of two classes of graphs, complete $t$-partite graphs and $(n-3)$-regular graphs with order $n$ for any $n\\ge 5$.", "revisions": [ { "version": "v1", "updated": "2011-09-19T03:05:09.000Z" } ], "analyses": { "subjects": [ "05C69", "E.1", "G.2.2" ], "keywords": [ "roman bondage number", "roman dominating function", "roman domination number larger", "minimum weight", "nonempty graph" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.3933H" } } }