{ "id": "1109.3931", "version": "v1", "published": "2011-09-19T02:58:13.000Z", "updated": "2011-09-19T02:58:13.000Z", "title": "The bondage number of $(n-3)$-regular graphs of order $n$", "authors": [ "Fu-Tao Hu", "Jun-Ming Xu" ], "comment": "6 pages", "categories": [ "math.CO" ], "abstract": "Let $G=(V,E)$ be a graph. A subset $D\\subseteq V$ is a dominating set if every vertex not in $D$ is adjacent to a vertex in $D$. The domination number of $G$ is the smallest cardinality of a dominating set of $G$. The bondage number of a nonempty graph $G$ is the smallest number of edges whose removal from $G$ results in a graph with larger domination number of $G$. In this paper, we determine that the exact value of the bondage number of $(n-3)$-regular graph $G$ of order $n$ is $n-3$.", "revisions": [ { "version": "v1", "updated": "2011-09-19T02:58:13.000Z" } ], "analyses": { "subjects": [ "05C69", "E.1", "G.2.2" ], "keywords": [ "bondage number", "regular graph", "dominating set", "larger domination number", "exact value" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.3931H" } } }