{ "id": "1109.3618", "version": "v1", "published": "2011-09-16T13:56:52.000Z", "updated": "2011-09-16T13:56:52.000Z", "title": "Existence and asymptotic behaviour of solutions of the very fast diffusion equation", "authors": [ "Shu-Yu Hsu" ], "comment": "19 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "Let n>2, $0\\max(1,(1-m)n/2), and $0\\le u_0\\in L_{loc}^p(R^n)$ satisfy $\\liminf_{R\\to\\infty}R^{-n+\\frac{2}{1-m}}\\int_{|x|\\le R}u_0\\,dx=\\infty$. We prove the existence of unique global classical solution of $u_t=\\frac{n-1}{m}\\Delta u^m$, u>0, in $R^n\\times (0,\\infty)$, u(x,0)=u_0(x) in $\\R^n$. If in addition 00, q2, if $g_{ij}=u^{\\frac{4}{n+2}}\\delta_{ij}$ is a metric on $R^n$ that evolves by the Yamabe flow $\\partial g_{ij}/\\partial t=-Rg_{ij}$ with u(x,0)=u_0(x) in $R^n$ where $R$ is the scalar curvature, then u(x,t) is a global solution of the above fast diffusion equation.", "revisions": [ { "version": "v1", "updated": "2011-09-16T13:56:52.000Z" } ], "analyses": { "subjects": [ "35K15", "35B40", "35K65", "58J35" ], "keywords": [ "fast diffusion equation", "asymptotic behaviour", "unique global classical solution", "global solution", "scalar curvature" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.3618H" } } }