{ "id": "1109.3580", "version": "v1", "published": "2011-09-16T10:59:01.000Z", "updated": "2011-09-16T10:59:01.000Z", "title": "An integral representation of divisor function. An equation for prime numbers", "authors": [ "E. E. Kholupenko" ], "comment": "5 text pages, 2 figures", "categories": [ "math.NT" ], "abstract": "A representation of divisor function $\\tau(n)\\equiv \\sigma_{0}(n)$ by means of logarithmic residue of a function of complex variable is suggested. This representation may be useful theoretical instrument for further investigations of properties of natural numbers.", "revisions": [ { "version": "v1", "updated": "2011-09-16T10:59:01.000Z" } ], "analyses": { "keywords": [ "divisor function", "prime numbers", "integral representation", "logarithmic residue", "natural numbers" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.3580K" } } }