{ "id": "1109.2765", "version": "v2", "published": "2011-09-13T12:54:39.000Z", "updated": "2012-05-15T16:00:12.000Z", "title": "Separability of double cosets and conjugacy classes in 3-manifold groups", "authors": [ "Emily Hamilton", "Henry Wilton", "Pavel Zalesskii" ], "comment": "25 pages; incorporates Agol's solution to the Virtually Haken Conjecture to prove conjugacy separability for all 3-manifold groups; to appear in the Journal of the LMS", "doi": "10.1112/jlms/jds040", "categories": [ "math.GR", "math.GT" ], "abstract": "Let M = H^3 / \\Gamma be a hyperbolic 3-manifold of finite volume. We show that if H and K are abelian subgroups of \\Gamma and g is in \\Gamma, then the double coset HgK is separable in \\Gamma. As a consequence we prove that if M is a closed, orientable, Haken 3-manifold and the fundamental group of every hyperbolic piece of the torus decomposition of M is conjugacy separable then so is the fundamental group of M. Invoking recent work of Agol and Wise, it follows that if M is a compact, orientable 3-manifold then \\pi_1(M) is conjugacy separable.", "revisions": [ { "version": "v2", "updated": "2012-05-15T16:00:12.000Z" } ], "analyses": { "subjects": [ "20E26" ], "keywords": [ "conjugacy classes", "fundamental group", "separability", "double coset hgk", "abelian subgroups" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.2765H" } } }