{ "id": "1109.2251", "version": "v2", "published": "2011-09-10T19:07:34.000Z", "updated": "2013-11-28T15:12:18.000Z", "title": "A space of weight one modular forms attached to totally real cubic number fields", "authors": [ "Guillermo Mantilla-Soler" ], "categories": [ "math.NT" ], "abstract": "Let $d$ be a positive fundamental discriminant, and let $\\mathcal{C}_{d}$ be the set of isomorphism classes of cubic number fields of discriminant $d$. For each $K \\in \\mathcal{C}_{d}$, we construct a weight 1 modular form $f_{K}$ with level $3^{\\pm 1}d$ and nebentypus $\\left( \\frac{-3^{\\pm 1}d}{\\cdot} \\right)$. We show that the form $f_{K}$ completely determines the field $K$. Moreover, we show that $\\{f_{K} : K \\in \\mathcal{C}_{d}\\}$ is a linearly independent set.", "revisions": [ { "version": "v2", "updated": "2013-11-28T15:12:18.000Z" } ], "analyses": { "subjects": [ "11R16", "11F27" ], "keywords": [ "totally real cubic number fields", "modular forms", "positive fundamental discriminant", "linearly independent set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.2251M" } } }