{ "id": "1109.2093", "version": "v5", "published": "2011-09-09T18:58:50.000Z", "updated": "2012-01-17T20:28:59.000Z", "title": "On the Hasse principle for finite group schemes over global function fields", "authors": [ "Cristian D. Gonzalez-Aviles", "Ki-Seng Tan" ], "comment": "A \"Concluding Remarks\" Section added", "categories": [ "math.NT", "math.AG" ], "abstract": "Let K be a global function field of positive characteristic p and let M be a (commutative) finite and flat K-group scheme. We show that the kernel of the canonical localization map H^{1}(K,M)\\to\\prod_{all v}H^{1}(K_{v},M) in flat (fppf) cohomology can be computed solely in terms of Galois cohomology. We then give applications to the case where M is the kernel of multiplication by p^{m} on an abelian variety defined over K.", "revisions": [ { "version": "v5", "updated": "2012-01-17T20:28:59.000Z" } ], "analyses": { "subjects": [ "11G35", "14K15" ], "keywords": [ "global function field", "finite group schemes", "hasse principle", "flat k-group scheme", "abelian variety" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.2093G" } } }