{ "id": "1109.1995", "version": "v2", "published": "2011-09-09T13:05:28.000Z", "updated": "2012-12-06T08:46:15.000Z", "title": "Counting function of the embedded eigenvalues for some manifold with cusps, and magnetic Laplacian", "authors": [ "Abderemane Morame", "Francoise Truc" ], "journal": "Mathematical Review Letters 19, (2) (2012) pp 417-429", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider a non compact, complete manifold {\\bf{M}} of finite area with cuspidal ends. The generic cusp is isomorphic to ${\\bf{X}}\\times ]1,+\\infty [$ with metric $ds^2=(h+dy^2)/y^{2\\delta}.$ {\\bf{X}} is a compact manifold with nonzero first Betti number equipped with the metric $h.$ For a one-form $A$ on {\\bf{M}} such that in each cusp $A$ is a non exact one-form on the boundary at infinity, we prove that the magnetic Laplacian $-\\Delta_A=(id+A)^\\star (id+A)$ satisfies the Weyl asymptotic formula with sharp remainder. We deduce an upper bound for the counting function of the embedded eigenvalues of the Laplace-Beltrami operator $-\\Delta =-\\Delta_0.$", "revisions": [ { "version": "v2", "updated": "2012-12-06T08:46:15.000Z" } ], "analyses": { "keywords": [ "magnetic laplacian", "counting function", "embedded eigenvalues", "nonzero first betti number", "non exact one-form" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.1995M" } } }