{ "id": "1109.1836", "version": "v1", "published": "2011-09-08T20:13:27.000Z", "updated": "2011-09-08T20:13:27.000Z", "title": "Local and global existence for the Lagrangian Averaged Navier-Stokes equations in Besov spaces", "authors": [ "Nathan Pennington" ], "categories": [ "math.AP" ], "abstract": "We prove the existence of short time solutions to the incompressible, isotropic Lagrangian Averaged Navier-Stokes equation with low regularity initial data in Besov spaces $B^{r}_{p,q}(\\mathbb{R}^n)$, $r>n/2p$. When $p=2$ and $n\\geq 3$, we obtain global solutions, provided the parameters $r,q$ and $n$ satisfy certain inequalities. This is an improvement over known analogous Sobolev space results, which required $n=3$.", "revisions": [ { "version": "v1", "updated": "2011-09-08T20:13:27.000Z" } ], "analyses": { "keywords": [ "besov spaces", "global existence", "low regularity initial data", "isotropic lagrangian averaged navier-stokes equation", "short time solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.1836P" } } }