{ "id": "1109.0452", "version": "v2", "published": "2011-09-02T14:16:13.000Z", "updated": "2012-02-28T08:12:14.000Z", "title": "Estimates for a class of oscillatory integrals and decay rates for wave-type equations", "authors": [ "Anton Arnold", "JinMyong Kim", "Xiaohua Yao" ], "categories": [ "math.CA", "math.AP" ], "abstract": "This paper investigates higher order wave-type equations of the form $\\partial_{tt}u+P(D_{x})u=0$, where the symbol $P(\\xi)$ is a real, non-degenerate elliptic polynomial of the order $m\\ge4$ on ${\\bf R}^n$. Using methods from harmonic analysis, we first establish global pointwise time-space estimates for a class of oscillatory integrals that appear as the fundamental solutions to the Cauchy problem of such wave equations. These estimates are then used to establish (pointwise-in-time) $L^p-L^q$ estimates on the wave solution in terms of the initial conditions.", "revisions": [ { "version": "v2", "updated": "2012-02-28T08:12:14.000Z" } ], "analyses": { "subjects": [ "42B20", "42B37", "35L25", "35B65" ], "keywords": [ "oscillatory integrals", "decay rates", "higher order wave-type equations", "first establish global pointwise time-space", "establish global pointwise time-space estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.0452A" } } }