{ "id": "1109.0305", "version": "v3", "published": "2011-09-01T21:03:34.000Z", "updated": "2012-05-17T14:57:45.000Z", "title": "Compactness characterization of operators in the Toeplitz algebra of the Fock space $F_α^p$", "authors": [ "Wolfram Bauer", "Joshua Isralowitz" ], "comment": "v1: 36 pages, no figures v2: 36 pages, no figures, typos corrected, submitted v3: 41 pages, no figures, typos corrected, major revisions made (Proposition 3.6 of v2 generalised significantly and introduction/closing remarks changed significantly), to appear in the Journal of Functional Analysis", "categories": [ "math.FA", "math.CV" ], "abstract": "For $1 < p < \\infty$ let $\\mathcal{T}_p ^\\alpha$ be the norm closure of the algebra generated by Toeplitz operators with bounded symbols acting on the standard weighted Fock space $F_\\alpha ^p$. In this paper, we will show that an operator $A$ is compact on $F_\\alpha ^p$ if and only if $A \\in \\mathcal{T}_p ^\\alpha$ and the Berezin transform $B_\\alpha (A)$ of $A$ vanishes at infinity.", "revisions": [ { "version": "v3", "updated": "2012-05-17T14:57:45.000Z" } ], "analyses": { "subjects": [ "47B35", "30H20" ], "keywords": [ "toeplitz algebra", "compactness characterization", "standard weighted fock space", "toeplitz operators", "berezin transform" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.0305B" } } }