{ "id": "1108.5949", "version": "v1", "published": "2011-08-30T12:54:07.000Z", "updated": "2011-08-30T12:54:07.000Z", "title": "Equality in a Linear Vizing-Like Relation that Relates the Size and Total Domination Number of a Graph", "authors": [ "Michael A. Henning", "Ernst J. Joubert" ], "comment": "15 pages", "categories": [ "math.CO" ], "abstract": "Let $G$ be a graph each component of which has order at least 3, and let $G$ have order $n$, size $m$, total domination number $\\gamma_t$ and maximum degree $\\Delta(G)$. Let $\\Delta = 3$ if $\\Delta(G) = 2$ and $\\Delta = \\Delta (G)$ if $\\Delta(G) \\ge 3$. It is known [J. Graph Theory 49 (2005), 285--290; J. Graph Theory 54 (2007), 350--353] that $m \\le \\Delta (n- \\gamma_t)$. In this paper we characterize the extremal graphs $G$ satisfying $m = \\Delta (n- \\gamma_t)$.", "revisions": [ { "version": "v1", "updated": "2011-08-30T12:54:07.000Z" } ], "analyses": { "subjects": [ "05C69" ], "keywords": [ "total domination number", "linear vizing-like relation", "graph theory", "extremal graphs", "maximum degree" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.5949H" } } }