{ "id": "1108.5844", "version": "v2", "published": "2011-08-30T06:37:42.000Z", "updated": "2013-06-03T13:34:02.000Z", "title": "Global solution to the drift-diffusion-Poisson system for semiconductors with nonlinear recombination-generation rate", "authors": [ "Hao Wu", "Jie Jiang" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study the Cauchy problem of a time-dependent drift-diffusion-Poisson system for semiconductors. Existence and uniqueness of global weak solutions are proven for the system with a higher-order nonlinear recombination-generation rate R. We also show that the global weak solution will converge to a unique equilibrium as time tends to infinity.", "revisions": [ { "version": "v2", "updated": "2013-06-03T13:34:02.000Z" } ], "analyses": { "keywords": [ "global solution", "global weak solution", "semiconductors", "higher-order nonlinear recombination-generation rate", "time-dependent drift-diffusion-poisson system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.5844W" } } }