{ "id": "1108.5689", "version": "v2", "published": "2011-08-29T18:22:09.000Z", "updated": "2012-02-21T06:33:53.000Z", "title": "Periodicity of the spectrum in dimension one", "authors": [ "Alex Iosevich", "Mihail N. Kolountzakis" ], "comment": "Correction of an error pointed out by Dorin Dutkay; Lemma 1 now has a new proof", "categories": [ "math.CA", "math.FA" ], "abstract": "A bounded measurable set $\\Omega$, of Lebesgue measure 1, in the real line is called spectral if there is a set $\\Lambda$ of real numbers (\"frequencies\") such that the exponential functions $e_\\lambda(x) = \\exp(2\\pi i \\lambda x)$, $\\lambda\\in\\Lambda$, form a complete orthonormal system of $L^2(\\Omega)$. Such a set $\\Lambda$ is called a {\\em spectrum} of $\\Omega$. In this note we prove that any spectrum $\\Lambda$ of a bounded measurable set $\\Omega\\subseteq\\RR$ must be periodic.", "revisions": [ { "version": "v2", "updated": "2012-02-21T06:33:53.000Z" } ], "analyses": { "keywords": [ "periodicity", "bounded measurable set", "complete orthonormal system", "lebesgue measure", "real line" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.5689I" } } }