{ "id": "1108.5616", "version": "v2", "published": "2011-08-29T15:46:05.000Z", "updated": "2013-03-09T15:49:16.000Z", "title": "A conditional quenched CLT for random walks among random conductances on $\\mathbb{Z}^d$", "authors": [ "Christophe Gallesco", "Nina Gantert", "Serguei Popov", "Marina Vachkovskaia" ], "comment": "31 pages, revised version", "categories": [ "math.PR" ], "abstract": "Consider a random walk among random conductances on $\\mathbb{Z}^d$ with $d\\geq 2$. We study the quenched limit law under the usual diffusive scaling of the random walk conditioned to have its first coordinate positive. We show that the conditional limit law is the product of a Brownian meander and a $(d-1)$-dimensional Brownian motion.", "revisions": [ { "version": "v2", "updated": "2013-03-09T15:49:16.000Z" } ], "analyses": { "subjects": [ "60J10", "60K37" ], "keywords": [ "random walk", "conditional quenched clt", "random conductances", "conditional limit law", "dimensional brownian motion" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.5616G" } } }