{ "id": "1108.5500", "version": "v1", "published": "2011-08-28T16:16:45.000Z", "updated": "2011-08-28T16:16:45.000Z", "title": "Rate of convergence of random polarizations", "authors": [ "Almut Burchard" ], "comment": "5 pages", "categories": [ "math.PR", "math.FA" ], "abstract": "After n random polarizations of Borel set on a sphere, its expected symmetric difference from a polar cap is bounded by C/n, where the constant depends on the dimension [arXiv:1104.4103]. We show here that this power law is best possible, and that the constant grows at least linearly with the dimension.", "revisions": [ { "version": "v1", "updated": "2011-08-28T16:16:45.000Z" } ], "analyses": { "subjects": [ "60D05", "26D15", "28A75", "52A22" ], "keywords": [ "random polarizations", "convergence", "expected symmetric difference", "borel set", "polar cap" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.5500B" } } }