{ "id": "1108.5375", "version": "v1", "published": "2011-08-26T19:24:26.000Z", "updated": "2011-08-26T19:24:26.000Z", "title": "Commuting categories for blocks and fusion systems", "authors": [ "Adam Glesser", "Markus Lickelmann" ], "comment": "5 pages", "categories": [ "math.RT", "math.AT", "math.GR" ], "abstract": "We extend the notion of a commuting poset for a finite group to p-blocks and fusion systems, and we generalize a result, due originally to Alperin and proved independently by Aschbacher and Segev, to commuting graphs of blocks, with a very short proof based on the G-equivariant version, due to Thevenaz and Webb, of a result of Quillen.", "revisions": [ { "version": "v1", "updated": "2011-08-26T19:24:26.000Z" } ], "analyses": { "subjects": [ "20C20", "20E15", "55P10" ], "keywords": [ "fusion systems", "commuting categories", "g-equivariant version", "short proof", "finite group" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.5375G" } } }