{ "id": "1108.5330", "version": "v5", "published": "2011-08-26T15:43:49.000Z", "updated": "2012-12-18T13:49:14.000Z", "title": "Persistent massive attractors of smooth maps", "authors": [ "Denis Volk" ], "comment": "13 pages. Added more references, updated existing ones", "journal": "Ergodic Theory and Dynamical Systems, FirstView Article, pp 1-12, 2012", "doi": "10.1017/etds.2012.139", "categories": [ "math.DS" ], "abstract": "For a smooth manifold of any dimension greater than one, we present an open set of smooth endomorphisms such that any of them has a transitive attractor with a non-empty interior. These maps are $m$-fold non-branched coverings, $m \\ge 3$. The construction applies to any manifold of the form $S^1 \\times M$, where $S^1$ is the standard circle and $M$ is an arbitrary manifold.", "revisions": [ { "version": "v5", "updated": "2012-12-18T13:49:14.000Z" } ], "analyses": { "subjects": [ "37C05", "37C20", "37C70", "37D20", "37D45" ], "keywords": [ "persistent massive attractors", "smooth maps", "arbitrary manifold", "standard circle", "dimension greater" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.5330V" } } }