{ "id": "1108.5171", "version": "v1", "published": "2011-08-25T19:57:40.000Z", "updated": "2011-08-25T19:57:40.000Z", "title": "Every set of first-order formulas is equivalent to an independent set", "authors": [ "Ioannis Souldatos", "I. Reznikoff" ], "comment": "This paper is a translation in English from the original paper of Reznikoff (in French,[1]) \"Tout ensemble de formules de la logique classique est equivalent a un ensemble independant\". It is intended only as a reference, not for publication. It is posted on arXiv with the permission of Dr. Reznikoff who we would like to thank", "categories": [ "math.LO" ], "abstract": "A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent set.", "revisions": [ { "version": "v1", "updated": "2011-08-25T19:57:40.000Z" } ], "analyses": { "subjects": [ "03B10", "00B50", "00B55", "00B60", "01A75" ], "keywords": [ "first-order formulas", "independent set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "fr", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.5171S" } } }